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ABSTRACT

We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow.

The problem is tackled numerically and also asymptotically, in the limit of large (azimuthal

and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution

passes through different regimes as the Mach number increases, relative to the wavenum-

bers. At very high wavenumbers and Math numbers, the mode which is present in the

incompressible case ceases to be unstable, whilst a new "centre mode" forms, whose stabil-

ity characteristics are determined primarily by conditions close to the vortex axis. We find

that generally the flow becomes less unstable as the Mach number increases, and that the

regime of instability appears generally confined to disturbances in a direction counter to the

direction of the rotation of the swirl of the vortex.

Throughout the paper comparison is made between our numerical results and results

obtained from the various asymptotic theories.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NASl-18605 and NASl-19480 while the second author was in residence at the Institute for

Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,
VA 23681.





1. Introduction

In recent years there has been a good deal of interest in the stability of incompressible

swirling vortex-type flows. Two important applications to this area of research are the

breakdown of trailing-line vortices behind aircraft and to tornadoes; this class of flow may

also be applicable to flows inside turbines and compressors, to which the present work

would be particularly relevant.

The earliest works in the area of the stability of swirling vortex flows include those

of Lessen & Paillet (1974) and Lessen, Singh & Paillet (1974). In the former paper the

stability of the Batchelor (1964) vortex was considered, at finite Reynolds numbers up to

150. In the second paper, the inviscid stability of this vortex was studied and revealed an

increase in growth rate at increasingly large wavenumbers (with disturbances being most

dangerous counter to the direction of the swirl).

Duck & Foster (1980) showed that for a given wavenumber a multiplicity of modes

exists. Leibovich & Stewartson (1983) and Duck (1986) considered the limit of large

wavenumber for this problem, and showed that a finite (maximum) growth rate was at-

tained. The aforementioned studies suggested an upper and lower neutral value of axial

wavenumber. The upper neutral point for large azimuthal wavenumber was treated by

Stewartson & Capell (1985), who showed that the "ring mode" structure of the unstable

modes persisted near the upper neutral points. Stewartson & Brown (1985) considered

these upper neutral points for order one azimuthal wavenumbers, and found that in this

case the modes were of centre mode type, similar to those found in a related study on

swirling Poiseuille flow (Stewartson & Brown I984). The behaviour of the unstable modes,

close to the lower neutral point, at large azimuthal wavenumber, was investigated by Stew-

artson & Leibovich (1987), and determined that in this case the instability disturbances

were centred near the axis of the vortex.

More recently, viscous results have been presented at finite (but large) Reynolds

numbers by Khorrami et aL (1989) and Khorrami (1991). In this latter paper, it was

shown that additional unstable modes exist, in which viscosity plays a destabilising role.

These modes were analysed by Duck & Khorrami (1991). The inviscid analysis is also



applicable to other vortex profiles, including that of Long (1961), as studied by Foster &

Duck (1982) and Foster & Smith (1989).

Little attention has been paid to the stability of compressiblevortex flows of this

type. On the other hand the area of compressiblejet flow hasbeen investigated for some

years now, the work of Michalke (1971, 1984) being relevant here, although restricted

to non-swirling flows. Compressibleswirling jet flows have also receivedsomeattention,

the work of Coleman (1989) should be mentioned, who studied the superposition of a

Rankine vortex on a top hat jet velocity field. More recently, Khorrami (1991) studied

a compressibleswirling axisymmetric jet, by assumingthe incompressibleflow of GSrtler

(1954) and Loitsyanskii (1953) wasapplicable in the compressibleregime.

In this paper, we take cylindrical polar coordinates, (It, O, Ix), with the x axis lying

along the axis of the vortex (which is taken to be axisymmetric), and l is some stream-

wise scale. We also take the flow far from the vortex centre to be directed along the

x-direction. The velocity field is written as U*u = U*(u, v, w), the fluid density is p*_p,

temperature T'T, first and second coefficients of viscosity #*#, #*A respectively, and

pressure p*U_2p. Here superscript asterisk and subscript oc denote dimensional and

freestream variables, respectively, and also U* is a velocity scale, defined below in (2.6),

whilst U* is the freestream velocity. We define the flow Reynolds number

Re = p_U_l (1.1)
#g

and we have a flow Mach number given by

M U; (1.2)
-- I ,

(TR*T*) •

where 7 is the ratio of specific heats and R* the gas constant. We also define the Prandtl

number to be

-- It*%, (1.3)

where _* is the thermal conductivity of the fluid.
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The non-dimensional equations of continuity, momentum and energy may then be

written

Op
0--_ + V.(p,1)= 0, (1.4)

Du 1P Dt - Vp- _V A [_u(V A u)] + V.[(A + 2#)V.u], (1.5)

Dh Dp 1

P Dt -- Dt + _ + -_-ffecV'(#VT)' (1.6)

where h is tile enthalpy of the fluid, and • is the viscous dissipation. We also assume a

perfect gas, in which case we have

pT

P-  M2 (1.7)

In the following sections we consider first the basic flow (section 2), which is shown to

be a proper solution of the above equations of continuity, momentum and energy. In

section 3 we consider the inviscid linear stability equations. In section 4 we present a

number of numerical results, guided by which, in section 5 we develop asymptotic results

for large wavenumbers; throughout this section we emphasise a comparison between our

numerical and asymptotic results. In section 6 a new class of mode, which is found to

develop at sufficiently large Mach number is considered. In section 7 we present a number

of conclusions arising from this work.



2. The basic flow

Let us consider the solution corresponding to Batchelors' (1964) similarity solution for a

swirling wake flow, equivalent to a far downstream limit (x >> 1) of the governing equations.

We thus suppose that the solution comprises of a uniform (freestream) flow plus a relatively

small perturbation, i.e.

uL
u- L--_. +fi,

U*2
p- u---v +_,

T=l+f,

p= 1 +,6.

(2.1a)

(2.1b)

(2.1c)

(2.1¢t)

(2.1e)

(2.1f)

The solution develops in much the same way as the incompressible case of Batchelor (1964)

and it is found to leading order that

2 *

CoUoo log(xRe_) QI(_/) +
8xu*2Re_

c42U7) - J8XUoo Reoo 8xu* 2 Reoo
, (2.2)

(2.3)

,(u;

_=0

where

1

CoRe£ (1 - e-n), (2.4)
a •- 2(x_)=u,

F2 Recx_

4x

(2.5)

u;=
2

Co Uoo log(xRe_) +
8xu*2Re_ 8xu* 2Re_ '

(2.6)
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and

QI(_) = ¢-', (2.7a)

Q2(r]) = e-'[log r] + ei(r/) - 0.867] + 2ei(q). (2.7b)

Co and L are constants and Re_ is the freestream Reynolds number defined by

R_ - pLU*l

We also find that

C2rr, 2

= 8xu*2U22Re_°"l°° [(1- r/e-"): + 2ei(q)- 2ei(2q)],

whilst the temperature perturbation is given by

T= e , -ffez(-_a_ ) + B + _x-- o2Re---_ ei(( o- )_2)

(2.8)

(2.9)

o 2

( e'_ e¼(a--1)( 2+ -8a-_- + 16a _2

8errr½

+--g--¢. ¢,-f(_:/2)- 8
e T-I_

_2 4a2rr'e@erf(¢/21))d_x

1 (-2a(-2eg + 2- _2e _ ei(_2/4)+ e4

+{2e_ ei(_2/2)) + _-_---)d_d_ , (2.10)

where A and B are constants, _ = 2q½, ei(z) and erf(z) are the exponential integral and

the error function, respectively, defined in the normal manner, and M_ is the freestream

Mach number defined by

U* U--M. (2.11)
M_ = (TR*T*)½ - U*

Note that we expect Mo_ >:> M. We also find it useful for the remainder of the paper to

define the lengthscale

r=_ = -, (2.12)
rs

where r, = (4x/Reoo)½ is the characteristic radial lengthscale.

In the following section we consider the inviscid stability equations.



3. The stability equations

We take the general basic state to be u = U(r),v = O,w = W(r),T = T0(r),p = p0(r), p =

po(r) and consider small amplitude perturbations to this flow; we write

u = U(r) + 5F(r)E + 0(52),

v = iSG(r)E + 0(52),

w = W(r) + 8H(r)E + O(82),

p = p0(r) + 87M2p(r)E + O(82),

T = To(,') + 8r(r)E + 0(62),

p = p0(r) + 8r(r)e + o(82),

(3.1a)

(3.Ib)

(3.1c)

(3.ld)

(3.1e)

(3.1f)

where, 8 << 1, and

E = exp[i(ax/rs + nO - act/r_)].

The governing stability equations, neglecting the effects of viscosity are then

FT + po aF + G' + --G + + Gp_o = O,
r r /

poTF + poU_G = -aP,

2WH FW 2
po_G + po_ + - P_,

poTH + po W t+ G = ---
r

7M_P = FT0 + rpo,

where we have written

nW
= _(u - c) + --

r
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(3.1g)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



and primes denote differentiation with respect to r. Note that (3.1), (3.2) (3.7) all im-

plicitly assume that the axial scale for the perturbation quantities is considerably shorter

than any developmental lengthscale for the basic flow, as is the case if rs << 1.

Equations (3.2)-(3.7) may be combined to yield the following two, first order equa-

tions

dP [¢p (Wet2) ' W 2 (_T_
d--7 = p° r3_ rqo \ To

_-1 Vo )Iv
+ (-7--) p0T0,J

2nW W2M 2"
r2_2 _ ]P"

(3.10)

These equations are somewhat similar to those considered by Michalke (1971), in the

context of jet flows, if the swirl velocity is neglected.

Let us now consider the specific basic flow of the trailing line vortex, as discussed in

the previous section. Equations (2.1), (2.3)--(2.5) may be substituted into (3.9), (3.10),

and then if we assume 1(5]<< I-_ log x], and using the fact that a simple transformation and

inversion of the axial velocity only affects the frequency of the stability analysis, and does

not change the amplification factor ci (where c = c,. + ici) and noting that i6,/_ and T are

an order of O(log x) smaller than _, _ and @, then (3.9), (3.10) reduce to

r__+ _;
= l r2_0 [ r2_0

__ _[2nW W_M2]p.
-_r : r3 _p

The boundary conditions to be applied are then

P(0)=0, n#0;

G(0) -- 0, Inl # 1;

P'(0), n = 0,

G'(0), Inl-- 1,

and G(r), P(r) bounded as r --+ ¢xD,
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and the basic flow may be taken to be

U=e-r2, (3.14)

_r 2

W = q(1 - c ), (3.15)
r

where q is an order one (swirl) parameter, and we have effectively scaled velocities with

respect to U*.

Equations (3.11), (3.12) may be combined to eliminate G, yielding the following

second-order equation for P.

2nW
)'] [w

r2W ) r2w

W2 M 2

"_2r2 + n 2

r2w
? M2 W = O.

raw
(3.16)

Setting M = 0 clearly reduces (3.11), (3.12) and (3.16) to the incompressible problem, as

considered by Lessen et al. (1974), Duck &: Foster (1980), Leibovich & Stewartson (1983)

and Duck (1986). It is also possible to be rather more precise regarding the behaviour of

the solution as r ---, oc; this takes the form

dG

d-_ + a(1 -c2M2)_a = O, (3.17)

dP
+ a(1 - c2M2){P = 0, (3.18)d--_-

where positive signs are taken for _{(1 - c2M2)½} > O, and vice versa, to ensure bound-

edness as r --+ oo.
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The "order one" problem requires a fully numerical solution, which we consider in the

following section, prior to considering various asymptotic limits of this system of equations,

which permit a certain amount of analytical progress.



4. Numerical results

The system was treated numerically using four different techniques. The first was based on

the method of Duck & Foster (1980), in which the system was approximated by second-

order central differences, with conditions (3.17) and (3.18) imposed at a finite radial value

r = rm=x, taken sufficiently large not to substantially affect the result. The determinant of

the system was then forced to zero by adjusting the complex wavespeed c (using Newton

iteration).

The second method was based on a fourth-order Runge-Kutta scheme, conditions

(3.17) and (3.18) were approximated by imposing boundary conditions at a finite radial

value r = rm_, where this value was again taken sufficiently large to not substantially

affect the numerical results. The computations were performed by shooting the solution

towards r = 0 and were not necessarily confined to the real r-axis. The value of c was

adjusted (again using Newton iteration), to ensure the correct behaviour of the solution

as r --+ O.

The third method used was based on the first, but was a global finite difference

method. Using the aforementioned finite-difference scheme, then by defining two addi-

tional quantities G = cG,/3 = cP at each grid point, it is possible to write the resulting

scheme in the form

(A - cB)x = 0, (4.1)

where

x= [{G}, {P}, {G}, {/3}]T (4.2)

This scheme has the obvious advantage of generating 4N eigenvalues (where N is the num-

ber of grid points), simultaneously. The principle disadvantages are (i) it is not possible to

use (3.17) or (3.18) because of the non-linearity of c, and consequently Dirichlet boundary

conditions were applied instead at the outer edge of the computational domain; and (ii)

the scheme requires rapidly increasing computational resources (both in storage and time)

as N increases.
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The fourth scheme implemented was a Chebyshev spectral collocation scheme, based

on that of Khorrami, Ash & Malik (1989). This was a global method, which generally

gave very accurate eigenvalues, but also yielded a large number of spurious eigenvalues, a

feature found in many spectral schemes. The first (finite-difference) scheme was quick and

robust, but because of its "local" nature, mode jumping was often experienced, due to the

frequent close proximity of neighbouring modes, as discussed later in the paper. The second

(Runge-Kutta) scheme was also quite fast, and had the advantage of being able to compute

neutral and near-neutral modes (and even stable modes) by contour indentation, but

again because it involved local searching was prone to mode jumping. The third scheme,

namely the global finite-difference scheme, which proved to be very robust, produced few,

if any spurious (i.e. non-physical) modes, and generated many eigenvalues simultaneously

because of its global nature. Consequently our results were generally computed using the

first scheme (if only a limited number of modes were required) or the third scheme if it

was required to compute many modes.

We now present a few numerical results to give some indication of the effects of

variation of certain of the important parameters. Here, and indeed in all our calculations

we chose 7 = 1.4, q = 0.8. Further, we generally found that r,nax = 5 was sufficient with

Ar _ 0.03.

Figures 1 a, b, c show the variation of growth rate (aci) with a for the case M = 3,

with n = -1,-2,-3 respectively. These results (and all those presented in this paper) are

accurate to within the graphical accuracy of the figures. Because of the great multiplicity

and close proximity of all these modes, we show the computed values of aci at each value

of a. From the outset it should be stated that all our results relate to negative values of

n; in general, we believe that instabilities are almost exclusively confined to this region of

parameter space, with perhaps a few minor exceptions. We certainly expect the largest

growth rates to be confined to the negative values of n (this is also the case when the flow

is incompressible).

We see in figures 1 the following general trends: (i) an increase in growth rates as -n

increases; (ii) an apparent cut-off value of a above which no unstable modes exist; (iii) a

11



tendency for the maximum growth rate to be attained at an increasing value of a as -n

is increased; (iv) many modes of instability.

In figures 2 a, b, e, d, e, growth rates for the case M = 5 with n = -1, -2, -3, -4, -5

respectively are presented. The trends (i)--(iv) described above are again observed, to-

gether with the result that for corresponding n and a, the growth rates of M = 5 are

substantially reduced compared to M = 3. Further the upper limit of a of the instability

appears to be quite independent of M, and section 6 confirms this observation. Note that

in figures 1 and 2, the lower range of a has been deliberately truncated. In this limit, our

numerical results became extremely sensitive to grid size, and computation requirements

became prohibitive.

These results suggest a number of interesting features, and in the following sections

we mount a systematic study for increasing M, when (-n) >> 1.
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5. Asymptotic results, (-n)>> 1

5.1 i=O(1)

It turns out that for this order of Mach number, to the orders to which we concern ourselves,

the solution (in particular for the complex wavespeed) remains unchanged from the -n >> 1

solution of the incompressible case, as considered by Leibovich & Stewartson (1983) and

Duck (1986). However, since this solution forms a basis for the following subsections, we

outline, briefly, the form of the structure in this case; full details can be found in the

aforementioned papers. We have that

a = n_, _ = O(1), (5.1)

and the complex wavespeed develops as

C2
C __-- C0 -4- cl -Jt- 7------7_,a 2t--- °,, •

Then generally

_, = nq;,0 + _1 +

where

(5.2)

v0 = a(u(_) - co)+

_2 +... , (5.3)
Inl_

w(_)
(5.4)

However the solution is found to be concentrated about points r = r0 (critical points)

where _po(r = ro) = 0 and so

_(u(_0) - c0)+ w(_0) _ o. (5.5)
r0

However, it turns out that r0 must in fact also be a turning point, and so

v_(_0)=0, (5.6)

i,e,

aU'(_0)+ (W7)0 =o, (5.7)
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(where a subscript zerohere and hereafter denotesevaluation at r = r0). Equation (5.7)

then serves to determine r0, and hence Co may be determined from (5.5). The key length-

scale inside the critical layer is given by

3

n = (r- _0)lnl_, (5.S)

and then on this scale

sign(n) {-6c2 + _o_(ro)R 2 } + O(n-1),_o =_1

]nl_

where

d 2

_,_(_o)= _[_'o(_)]r=ro"

(5.9)

(5.10)

(5.11)

For consistency it was shown by Leibovich & Stewartson (1983) and Duck (1986) that

-2 t 2

(W2r2)'° [(rW)'° + at°U°] (5.12)

Ot r0 )r0 C[

Further, on the R = O(1) scale the eigenfunctions scale as

P=T+... , (5.13a)

a =,_g+... , (5.13b)

and then P(R) is described by

or

_ - _ + ---, =
2(A1)_

_v°'(r°)R22_c1] sign(n)(1.r_ + (_2r2) }_5_111_

(5.15)

14



1 !

where we have written _ = 2_ A14R, with

2 (1 + 62r_) -A0_)'(r0)
A0 = --sign(n) and A,- (5.16)

Cl r02 26

Equation (5.15) has a solution which may be written in terms of Weber parabolic cylinder

functions, Dm(_), and so if we demand the solution decays as I_l _ cx), then m must be

an integer, yielding the following result for c2:

1

(A')_(I" + 2m), m=0,1,2,... (5.17)
c2 - Ao

Figure 3 shows the variation of growth rates for M = 3, for n = -1 (the least unstable

mode shown) up to n = -10 (the most unstable mode shown) as computed for the full

system; in all cases the most unstable mode for each value of n is shown. Using the

asymptotic results above, we show the corresponding results in figure 4 (in particular we

set m = 0 in (5.17)). The comparison between figures 3 and 4 reveals good agreement in

the growth rates at larger values of -n, although at smaller values of -n, comparison is

less good than the comparison of incompressible numerical and asymptotic results. This

less satisfactory agreement may be attributed directly to the effects of compressibility, but

for lnl sufficiently large, the asymptotic results presented in this sub-section are ultimately

approached.

In the following sub-section we begin to incorporate compressibility into our asymp-

totic description.

5.2 M=O(In]¼)

The key equation (5.14) was obtained by taking the O(In I}) terms in equation (3.16).

If Inl >> 1, and we now permit M to grow in magnitude, additional terms will ultimately

enter (5.14) when

M=lnl¼ r, (5.1S)
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m

when the coefficient of P will include the effects of compressibility. The modified equation

is then

PRR --sign(n)_2 [c2 -- _(r°)R2] (1 +_2,'02 )
L¢1 2_Cl J r 2

+ 0

All other quantities (specifically co and cl ) remain unchanged from those evaluated previ-

ously. This equation may be transformed to the same form as (5.15), viz

where A0 and A1 are given by (5.16), whilst

A2 =sign(n) (rW)_+- e ,
ctr_cl r 0 "

Consequently, using our previous arguments

_ = {(_)_(_+2m)+_}- A0 , m = 0,1,2,... (5.22))

Figure 5 shows a comparison of "exact" growth rates (obtained using the numerical ap-

proach of section 4), shown as a broken line, with the asymptotic results of this subsection;

here, the chosen values of n are -5, -10 and -15 and we set M = In[¼ i.e. __r = 1 in each

case. The agreement is satisfactory, and improves as n increases. Figure 6 shows the

corresponding comparison for cr; in this case the agreement is excellent.

5.3 M=O(lnl_)

As M (and hence M) increase in magnitude, the "A• 2 component" of c2 increases (as

M 2 ) and becomes sufficiently larger than "A1 component". Simultaneously, the coefficient

of P,- in (3.16) will grow, and further terms in the coefficient of P will become significant.

The next important regime for M is when

N

M= I_I_M, M = O(1). (5.23)

16
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Although the key radial scale remains R = O(1) (see (5.8)), the series development of c

and _(R) is now altered, and is instead

Cl C2 C3
c=co+--+_+_+... , (5.24)

n i,_1_ i,_1_

and therefore,

_'2

Inl_

= --_Cl -- --

_3
+:--:r._ +...

1

in[¼ _c2sign(n)

1 1 _;(ro)R2}+ ....+--7_ _-_c3sign(n) +
inl_ -

(5.25)

Considering O(InlN) quantities in (3.16) requires that the sum of these terms is zero, and

so this leads to,

c2 = -sign(n) M2W_ [(rW); + (_ro2U; ] (5.26)2 r0 L J

The equation for P(R) is again obtained by taking the O(Inl_) terms in (3.16), namely

PRR M2W_ PR -- {1 + _2r_ [2 P3 + _P---_] }P : O. (5.27)
ro ro2 _ _1 _

Using the standard transformation

P(R) = P*(R) exp [_ ro J

then

P;.- {2 sign(n)( c-3
\e I

_p_(ro)R2"_ 1 + (_2ro2)

+ \ 2to

(5.28)

=0, (5.29)

17



or

0 (530)p_,__ _.2 __ 2(/_1) }

where

2

L 2,-oj

Since (5.30) is again a form of Weber's equation, then

c3 = _{ (A')½(I+ 2m) + A3 },
Ao

_ = 0,_,2,... (5.32)

Figure 7 shows a comparison of asymptotic results (solid lines) with numerical results

(broken line), for n =-5,-10,-15 with M = ln]_- (i.e. M = 1). Again the comparison

becomes markedly better as ]n I increases. The corresponding distribution of c,- is again

good, and shown in figure 8.

5.4 M=O(Inl½)

In this case it is quite clear from the previous subsection that when _r = O(ln [_), then the

c2 term (see (5.26)), which grows as M 2 will become comparable in magnitude to the term

involving ca (which is independent of M); in addition to this, since ca grows as _4 as 3_

increases, then this term will also become comparable to the el term when M = O(lnl½ ).

In this case, it is straightforward to show that R = 0(1) remains the appropriate radial

i scale, whilst the wavespeed expands as follows iCl C2

c = co + -- + 7.3 + ... (5.33)

implying ----"

i
|

_2
_ :(_01 -{- 7---7T-,1

If we write

M=

+ .... (5.34)

A

M = 0(1), (5.35)

18



then the equation for P(R) is

1 + (_2r02
+ r_c21 )( 991

[_2 ((_w)'_o+ _u_ ) __,_+ [ \ ro29_1 9_1

(_w)_ +_o_U; ,_2w_)_,2+sign n

+2(_+_0_ ((w_l_) _

(w2_2)_

=0. (5.36)

Again using a standard transformation of the form

P(R) = P(R)exp [1 In]¼ M2W(_R''ro

leads to the differential equation

-PRR- {In] ½ [ ((rW)_lro2q_'+(_r_ U_ ) \ro2_'(2W°

+ (_2r 0

[_2 ((_w)'_o+___T_u;] __
nt- [ \ r029_1 / qO1

_"2 W2,

sign(n) _o ° )

(w_)_ ,_'_w0_)r_ol )+( 2ro 2]

(5.37)

((_w)__+_u_ ,g_w0_)_+sign(n)\ r02q_l ) (" T0 qOl

+2(1 + 6_2T_ ((WZT2)_ o _o2
T02(_1 ) k, ro2qO, )_1]} _" =0" (5.38)\

If our assumption regarding the importance of the R = O(1) scale is to be consistent,

(although see the comments below regarding R = O([n[¼)) then the coefficient involving
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Inl½ above, must be zero. (This is also consistent with the previous smaller orders of Mach

number considered previously). This leads to

c_ nc2+
2_,.o ', 1 + g_ J v- 2_r0_ J 1+ _2,,0_

cl = (5.39)

1 f M'2 W02 ) 21+ 1+_2ro2( 2

inc denotes the incompressible value of cl, given by (5.12). The equation thatwhere c 1

determines P(R) is then,

_°'(r°)R2)sign(n)[12(}c1 "J- (:}2 r2.r0___ ._ + ( M'2 W02 _2_r 0 ]

+sign(,_)Wo2_((_w); + _du_ )1} (5.40)

or symbolically

PRR -[_1 R2 + _0c2]P* = 0, (5.41)

and using previous arguments, we must have

(_,)½ (1 + 2m)
m =0,1,2 .... (5.42)

C2 _ _0

Note that although the transformation (5.37) suggests growth as R _ ec, this is more than

offset by the decay of the parabolic cylinder functions, albeit on a larger lengthscale R =

O(Inl¼). Note too that the transformation (5.37) is consistent with that used previously,

namely (5.28).

Figure 9 shows comparison between the above asymptotic results (solid line) and the

"exact" numerical results (broken line), for the most unstable growth rates when n = -5,

-10,-15 (M = Inl½, i.e. _M = 1 in all cases). Again the agreement is seen to improve as

-n increases. Figure 10 shows a comparison between the corresponding c_'s, for the above

cases and indicates good agreement between our asymptotic and numerical results.
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A

It turns out, however, that this order of M marks a watershed. When M is not

large, both roots of Cl must be complex (and from our previous discussions, the flow is
A

unstable). As M increases, however, eventually terms inside the square root term in (5.39)

will eventually become positive, and hence the two roots of cl will cease to be complex

conjugate pairs, but will both become real. In particular, this will occur when

M'LWo 2 (W2r2)oro = inc 2

2_ro 2 1+ _2r02 cl "
(5.43)

To illustrate the stabilisation of these modes, in figures 11 a, b, c, we show the variation

of the growth rates with M for the cases n = -5 and o_ = 2.5, n = -10 and c_ = 5,

n = -15 and ol = 7.5 respectively. We clearly see these modes becoming neutrally stable

at finite values of M. For comparison, in figures 12a--12c (corresponding to figures 11a--

11c respectively) we show the corresponding results from solutions of the full system (3.11),

(3.12). At the lower values of M, there is good correlation between the two sets of results.

However, as the Math number increases, and as the order of the modes (i.e. rn) increases,

the correlation deteriorates. We consider this latter point first by examining the behaviour

of the higher order modes.

5.5 The structure when m =O(Inl½), (M=O(Inl}))

One detail that has not been considered so far, is the behaviour of the modes as rn increases.

This feature was considered by Duck (1986), and we consider this aspect here, for the

important case when M = O(]n]-}). c develops in the same manner as in the previous

sub-section, and close to the critical layer _o takes the form

1

_0 = (ill + ]rt[----_!qP2 4- .... (5.44)

co remains unchanged from that given previously, however ca will differ. In this case, we

consider the lengthscale

k = (r - r0)l, l = o(1), (5.45)
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and soon this scale

sign(n) "r
_1 =-_c, + _ _o(o)/_2, (5.46)

sign(n)
_,2= -_c_ + 3-----V-._,'_'(ro)_3.""= (5.47)

Substitution of these expansions into our governing equation gives, to leading order, an

eigenfunction equation of the form

P_'_ + q,(R)P'_ + Inlq2(f_)P = o. (5.48)

Using the standard transformation

P(R)= P*(R)exp[ -1/q,(R)d.R], (5.49)

we obtain

p_g + [in[q2 1 i 2" •- sq,-_- -_q,l p =0. (as0)

However, since Inl is large, (5.50) may be approximated by

P*-+ [nlq2P* = O, (5.51)RR

where

__ [ -2 2 3 3
1 . 4roW_ +(1 +a ro)(ro_ 1 - (W2r')_)

_'}'4v,r4 2 3

-sign(n)2Wo2r_M'_,+ lu v_ _°'r° J. (5.52)

Thus (5.50) may be written as

(1 + _:):
r] 1

.jR* = o, (5.53)(1+ _)
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with

214roW_ - (1 + 62ro2)(W2r2)_]sign(n )
#= - 2 u

-2[(1 + 62r_) + M_4Wo4/4]6c, sign(n )
/Y = 2 tt_o_o(_o)

(5.54)

(5.55)

4W°3 M'2 (5.56)
77-- 3 - '

ro_o(ro)

. o

-_'(ro)sign(n)

1

7

k, (5.57)
2¢_Cl

h_= I_1. (5.58)

Equation (5.53) is now in a form suitable for a WKBJ type of approximation. This equation

has four turning points, however for the range of _ required that we need consider only

the turning points at

1

=+ _ 7/+ +---1 (5.59)

For large h the WKBJ solution is given by

p* =q-z Alexp (ihq-_d_)+ A2exp -(zhq-_d() , (5.60)

where

q - # 77 u. (5.61)

(1+ _2)2 (1+ _2)

The treatment near the turning points is standard (see for example Duck 1986) and leads

to the following dispersion relationship for cl

Ih=-4(1+ 2m), m=0,1,2,... (5.62)
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where

, (1+42) 2 (1+42 ) u d4

---- 1 1 II ,o/ ,k , (5.63)

1

41 = 71 4- 4- -- --1
v 2V7 _ v (5.64)

1

= i(_ + _),/4'_ (5.65)

t
g, = -- (5.66)

g 2,

1

k = g -2-_v 4- 2g' - 1 , (5.67)

--2 -2k2

O/ -- (u_ __ gl)g2" (5.68)

Here, F(_, k), E(_, k), H(_, _2 k) denote complete emptic integrals of the first, second

and third kinds respectively

The system (5'62) was solved using Newton iteration, and results for variations of

growth rate with M were computed for m = 0, 1, 2, 3, 4, 5 for the cases n = -5, a = 25

(figure laa), ,_ 10,_ = 5 (figure lab), n = -15,_ = 75 (figure 13c) The modified

theory of this subsection does indicate some important improvement in the comparison

with figures 12; in particular the "bunching up" of the modes with an increase in order is
:7 77"7: _ : :

=

captured. However, although for n = "15 there is quite good correlation for the lower order

modes, as m increases, the various wiggles observed in figures 12 are not described, and

more importantly our asymptotic results do not capture the instability shown in figures 12
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beyond about M = 8. Indeed, figure 12 indicates instability as M increases. We therefore

conch:de that the nature of these modes, as M _ oe is somewhat different. It turns out

from the analysis of the following section that as M ---* 0% a further class of mode emerges,

quite distinct from those considered so far.
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6. Centre Modes, M:O(]n)

Here we examine modes exhibited when the Mach number is of order n, i.e.

M = InlM, M = O(1). (6.1)

_=

As noted previously, as M ---+ cx3, the features of the modes exhibited at lower Mach

numbers cease to exist. In fact the analysis of sub section 5.5 suggests that the modes

in this regime under present consideration are neutral. However, our numerics belie this

and point towards the existence of centre modc_, by which we mean, the eigenvalues are

determined primarily by conditions close to the axis of the vortex, r = 0, in a manner

similar to that of Stewartson and Brown (1984, 1985). Here, the complex wavespeed

develops as

el

c = Co + _- +... , (6.2)

(an expansion that can be verified a posteriori) and therefore

_v = n_o + ____[1+ ...
n

In order to be consistent we must have that _20(r = 0) = 0, i.e.

q (6.4)c0=l+_-.
O_

We must now go on to find Cl in our complex wavespeed expansion. The solutions are,

in the main, trapped in the region around r = O, but we begin by showing how these

solutions are connected to the outer flow. The flow is divided into the four regions, which

are considered in turn.

We first begin our analysis at the outer region of the flow, where r = 0(1), and the

governing equation has the form

- I 12w2- 2P + ]nl4_2+_P = 0. (6.5)
r
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Using a transformation of the form

P = P*(r) exp o 2r j'

and writing

x0 +-
4r 2 ,

(6.6)

(6.7)

reduces (6.5) to

P,_*_-Inl4x0p * = 0. (6.8)

We define the critical point r0 by X0(_0) = 0 and when r > r0, X0 < 0 and the approximate

solution to (6.8) is given by

p,_ Ea exp{iln[ 2 [_X0]½dr}, (6.9)
[-x0]¼ 0

where E1 is an unknown constant.

We have also assumed that [-X0]½ is slightly imaginary, with its imaginary part

positive. This condition is to ensure that the solution is bounded as r --, oe, otherwise if

Irn{[-X0]½ } < 0 we replace 'i' by '-i' in (6.9). Looking at this point from a more physical

perspective, we require waves to propagate out from the critical layer and not in toward

it.

In order to be able to match (6.9) with the solution in the r < r0 region, we must first

examine the solution of the flow in the transition layer, around r = r0. The lengthscale in

this region turns out to be

7"- _o = -RI'_I -_, -_ -- 0(1), (6.10)

and use of this scaling reduces our governing equation to the Airy equation, which has

solutions of the form

P* = F_Ai(x_(7o)) -_R) + F2Bi(_(;(_o)) -_R). (6.11)
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Standard analysisand matching with (6.9) yields the result

F_ = iF2. (6.12)

In the region r < r0, X0 > 0 and hence the WKBJ solution here is given by

D 1 .exp{f_i ]p_I2[[W4844r 2 __M2_)02 ] ldr}

, [w4_, 1 }+D2exp{-/0 Inl2[ _r2 M2T_]'dr} •

As we approach the transition layer this solution must match with (6.11) implying

D1 = -iD2v/-3.

Note that as r --* 0

) )\ 4 4 '

where,

Z1 = exp o In[ 2 (Xg q2-M2r2 )dr ,

1
Z2 = i

Z1

We now consider the lengthscale, r = o(l_l--g), by setting

= rl,_l_ = o(1).

The governing equation in this region, to leading order, is given by

P_- Inlq2-H2_p_ + Inl _ [2q z_2
1 lP O,

L _1 _2 j
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(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)



where

_Ol = 1_o_'(0)_2, (6.20)

and as previously, it is necessary to use a transformation, which is of the standard type,

i.e.

P = P** exp{ (6.21)

which leads to the final form of the governing equation in this region, viz

2qaM 2 1P;* + Inl= , ,, -= _=_o(O)r
(6.22)

This equations yields solutions of the form

(6.23)

where I and K are modified Bessel functions, written in standard form, with

_( 2q3M2 ½u= 1 _)
_-_o(O)

(6.24)

Now) aS f --+ (X)

I

C1 _

J2rrq2-_2lnle2 /4

+c_}_/ '_ (2q2M2]nl?2/4 exp
q2-M21'_l#2), (6.25)

4

and comparing this with equation (6.15), we see that in order for these solutions to match

and taking into account equation (6.14), then

C1 = -irrv'gZ_ C:. (6.26)
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Also, we take note of the fact that as _ --_ 0, then

F(u + 1) + F(r,) _,/;2 ),

where fll = q2--M2lnl/4 and F(u) is the gamma function,

Next we set

R = r[n I = O(1),

(6.27)

defined in the standard fashion.

(6.28)

and in this regime c2 develops as

_=--+...
n

( 1 )1 -_cl + _o_t(0)R 2
-n 2 +""

with the governing equation

402 q 2 + 45Lq

PRR + In[ :_[[-_c,    (0)R212+

which has the solution

2q3M 2
+

1 It 2[-a_, + _,o(O)n ]

2 l'q 1
(TR)-r+_

P= _---_-R-_)_ r(wl; _2; lnl + 1;TR2),

where, F is the hypergeometric function in standard notation, and

1 II

T- _,0(0),
Ocl

_1 = _(1_1- ._)- _,

= (1_1=+ b)_,

aT

/5(/) + 1)- 4 '

3O

(6.29)

1]R2 P = 0, (6.30)

(6.31)

(6.32a)

(6.32b)

(6.32c)

(6.32d)

(6.32e)



with

a = [nl2 { 4qS_ + 4q2_2 }I,, (6.33a)_(_0(0))2 '

b- 4q31 n 12_--_2
_(0) (6.33b)

Note that this equation is very similar in form to that found by Stewartson & Capell

(1985). This solution is of course finite at R = 0 by the definition of the hypergeometric

function, and therefore satisfies our boundary conditions at the centre of the vortex. As

R becomes large

p ,,_ R½(A1R _ + A2R-_), (6.34)

matching this with (6.27) and making use of (6.26) we see that,

F(_/2 + 1)F(_/2)lnl _
A_ = -izrA22v/3, (6.35)

( )'z,_½_1

which gives us a relationship between A1 and A2. We now go on to determine c_ explicitly.

We begin, by writing P, as R -+ oo, in terms of its asymptotic expansion in this

limit, i.e.

(6.36)

where,

Inl!(_- 1)! (6.37a)

+_-_-1 ! +_+_!

,_o= I,_1!(-_ - _)! , (6.37b)

(121 s /_-1)' ( Inl s+/_)l2 " 2 2
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and _1 and _2 areboth powerseriesexpansionsin 1/TR _,with their leadingorder terms

unity. Matching the two large R solutions, (6.34) and (6.36) yields the relationship,

A1 qo

- _0(-rF. (6.38)A_

However, since ].sI :>> 0 then IT_I >> 0, which in turn implies that I_-0[ ::>>]601, and therefore

to leading order, q0 = 0. Hence, we see that, ½(I,_l+ -_)- P m,_t be either a negative
integer or zero, i.e.

1 I,_1+ s) + N, (N _> 0), (6.39)po = _(

for integer N, where t0 denotes a first order approximation to _.

Since s is imaginary, the above expression substituted into (6.32e) and (6.32a) gives

tile leading order imaginary contribution to cl. i.e. it is obtained from

a¢_'(0)

Cl = 80_0(/_0 + 1)" (6.40)

It is also possible to obtain the correction to this term by retaining the next order approx-

imation to #. On setting, /_ =/_0 + A/_, where [A#I << 1, then we obtain

(--1)N+l]nl! N! (s - 1)!
to = (_ ÷ I'_1÷ N)! A#, (6.41a)

,_o= (--1)NI"I!(_+ N)!
_!(lnl+N)! ' (6.41b)

and then (6.38) gives

Aft- A1 (s+ln[+N)!(s+N)!
A2(-T)-_s!(s - 1)! N! (In [ + N)!"

(6.42)

Since

l II_a_0(0)
4_c_
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and therefore, if weallow _ =/_0 + A_ in the above, we see that

C 1 _---
(2/Lo + 1) Afi_.

4rio(fro + 1) J
(6.44)

Therefore, we may now write C 1 as

_ a_'(O) [O- S&_o(fio + 1) 1 + ( )sA, a (s + [nl + N)! (s + N)!

_-2 4t_o(/5o + 1) s!(s - 1)!N!(ln I + N)!

(2_o + 1) ] (6.45)
x 4_o_2 1) j '

where, all variables in this expression have been previously defined. However, the correction

term is found to be of several orders of magnitude smaller than the leading order term of

C 1 •

In figure 14a we show the variation of the growth rate with o_ for the case n = -5, M =

5. This figure is to be compared with figure 2e, computed from the full system; comparison

between the asymptotic and fully numerical results is surprisingly good, considering the

smallness of -n and M. Figures 14b shows the growth rate variation, predicted from the

analysis of this subsection, for the case n = -10, M = 10 and is to be compared with the

fully numerical results shown in figure 15. Again, the results are encouraging, in particular

the magnitude and location of the maximum growth rate is quite accurately predicted.

Unfortunately, our attempts at a numerical solution of (3.11), (3.12) with a reasonable

number of grid points for the case n = -15, M = 15 proved unsuccessful, due to a large

number of spurious (i.e. highly grid-dependent) modes. Indeed, it was found that as M

was increased, our numerical scheme often failed abruptly, with a sudden generation of

large numbers of spurious modes.

Referring again to figures 14, we see that the upper neutral point is clearly seen. This

occurs at a = -n/q, the point at which a = 0 (see (6.33)). The fully numerical results

throughout this paper all very clearly show this result, which appears to apply universally,

as in the incompressible case.
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Additionally figures 14 show a distinct lower neutral point. This corresponds to the

value of a where _'(0) = 0 namely (i = -q/2. At this location, a and b (defined by

(6.33)) both exhibit a singularity. There is some correlation with these results and those

of the fully numerical scheme. Indeed, it is most remarkable that the location of this

lower neutral point is identical with that found in the incompressible case (Stewartson

Leibovich 1987), and that both the upper and lower neutral points are captured by (6.45).

It is also worth noting that there is some similarity between the structure of these

modes, and those found in the incompressible work of Stewartson & Brown (1985), al-

though the particular details are different, and in our case analytic/asymptotic solution on

the r = O(1) scale is possible (see 6.6), whilst Stewartson & Brown (1985) had to resort

to a numerical approach for this scale.

In the following subsection we go on to draw a number of conclusions from our study.
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7. Conclusions

We have mounted a systematic study of the inviscid stability of the trailing line

vortex, starting at zero Mach number M, and progressively increasing M. We see a general

reduction in growth rates as M increases, and indeed the results of subsections 5.4 and

5.5 predict that the original family of modes will stabilise when M = O(Inl½), specifically

when (5.43) is satisfied. However it is shown in section 6 that when M = O(lnl) , a centre

mode class of instability is formed. We feel that although our numerical results (figures

12 in particular) indicate that these modes spring from the higher order modes at lower

Mach numbers, as -n increases these centre modes modes may well become distinct from

the original class of modes that exist at lower Mach numbers.

A further important feature of note, and one that is observed in incompressible work

(Leibovich _ Stewartson 1983, $tewartson _ Brown 1985) is that there is a good deal of

numerical evidence to suggest that there exist no instabilities for a > -n/q. Indeed, this

is also confirmed by (6.45), noting that a is given by (6.33). This aspect is currently under

further investigation.
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Figure 13a Variation of growth rate with M using section 5.5 results, n = -5, a = 2.5,
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Figure 13c Variation of growth rate with M using section 5.5 results, n = -15, a = 7.5,

first 6 modes.
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